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Abstract. This is a review of genesis of ε − δ language in works of
mathematicians of the 19th century. It shows that although the sym-
bols ε and δ were initially introduced in 1823 by Cauchy, no functional
relationship for δ as a function of ε was ever ever speci�ed by Cauchy.
It was only in 1861 that the epsilon-delta method manifested itself to
the full in Weierstrass de�nition of a limit. The article gives various
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It is mere feedback-style ahistory to read
Cauchy (and contemporaries such as Bernard
Bolzano) as if they had read Weierstrass
already. On the contrary, their own
pre-Weierstrassian muddles need historical
reconstruction.

[Grattan-Guinness 2004, p. 176].

Since the early antiquity the concept of continuity was described
throgh the notions of time, motion, divisibility, contact1 .

The ideas about functional accuracy came with the extension of
mathematical interpretation to natural-science observations. Physical
and geometrical notions of continuity became insu�cient, ultimately

∗ Galina Ivanovna Sinkeviq
1�The 'continuous' is a subdivision of the contiguous: things are called continuous

when the touching limits of each become one and the same and are, as the word
implies, contained in each other: continuity is impossible if these extremities are
two�. �Being continuous it is one� [Aristotle, Physics, Book V, parts 3, 4].
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necessitating an arithmetization of this concept. The understanding
of the continuity of mathematical objects was evolving gradually. The
concept of a continuous function was formalized only in the early XIX
century, and that of a numerical set - in the late XIX century.

In the XVII century, G. Leibniz laid down The Law of Continuity as
follows: �In any supposed [continuous] transition, ending in any termi-
nus, it is permissible to institute a general reasoning, in which the �nal
terminus may also be included2 � [Child, 1920, p.40].

In his Arithmetica In�nitorum Wallis introduced the following de�-
nition of a limit: �But (which for us here su�ces) they continually ap-
proach more closely to the required ratio, in such a way that at length
the di�erence becomes less than any assignable quantity� [Wallis (1656),
2004, p. 42]. Euler's personal copy of this book of Wallis is preserved
in the Archives of St. Petersburg Academy of Sciences as part of the
Euler collection.

Euler considered functions represented by a single formula to be
continuous. According to Euler, �the rules of calculation are based on
The Law of Continuity, pursuant to which curved lines are drawn by
continuous movement of a point�, �a continuous line is drawn so that its
nature is presented with the help of one speci�c function of x� [Euler,
1748, v.2 p. 21].

In 1765, J. d'Alembert provided the following de�nition of a limit: �A
value is said to be a limit of another value if the latter can approximate
the former nearer than any given value, no matter how small it may
be supposed, however, without the approximating value being able to
exceed the value it approximates; thus, the di�erence between such
value and its limit is absolutely indeterminable� [d'Alembert, 1765, p.
155-156]. The limit in the d'Alembert was not constant.

L. Carnot in 1797 tried to unite the the method of limits and in-
�nitesimal calculus as �procedures of both methods became absolutely
identical� [Yushkevich, 1986, p. 45-55]. The contest declared by Berlin
Academy of Sciences in 1786 at the initiative of J. Lagrange promoted
strengthening of interest in in�nitesimal issues: �... we need a clear and

accurate theory of what is called continuous in mathematics� [Yushke-
vich, 1973, p. 140]. None of the 23 works submitted to the contest
satis�ed the Academy: �. . . the principle we need must not be limited to
calculation of in�nitely small values; it must extend to algebra and ge-

2The word "continuous" was omitted is Child's translation, as pointed out by
[Katz, Sherry, 2012, p. 1551]. I am grateful to S.S. Demidov who brought to my
attention the similarity of this idea of Leibniz and Bolzano's and Cauchy's under-
standing of continuity [Demidov, 1990].
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ometry as well which render after the manner of the ancients� [Yushke-
vich, 1973, p. 141]. The winner of the contest was a Swiss mathe-
matician Simon L'Huilier (1750 - 1840), who lived in Warsaw at that
time. It was in his work entitled `Elementary statement of principles of

calculus' published by the Academy in 1786 that symbol lim
∆P

∆x
�rst

appeared [L'Huilier, 1786, p. 31]. Thereafter, this symbol was used by
Lacroix3 .

The in�nitesimal methods disappointed Lagrange and in subsequent
years, he avoided using in�nitely small values (in�nitesimals). Nonethe-
less, in 1811, in his 2-nd publication of Analytical Mechanics, Lagrange
called in�nitesimals a safe and convenient tool to simplify a proof 4.

�On a conservé la notation ordinaire du calcul di�erentiel, parce
qu'elle répond au système des in�niment petits, adopté dans ce Traité.
Lorsqu'on a bien conçu l'esprit de ce systeme, et qu'on s'est convaincu
de l'exactitude de ses résultats par la méthode géométrique des pre-
mières et dernières raison, ou par employer les in�niment petits comme
un instrument sur et commode pour abréger et simpli�er, les démon-
strations. C'est ainsi qu'on abrège les démonstrations des Anciens, par
la méthode des indivisibles� [Lagrange, 1811, p.ii].

The most popular method of XVIII century geometricians was ap-
proximation. For example, �solving an equation like (x + 1)µ = a with
non-integer µ, we cannot come up with a precise solution, but approx-
imate it using in�nite series. Having determined the �nite number of
elements of the approximating series, XVIII century geometricians tried
to calculate the upper limit of the approximation error (error, ε), i.e.
the di�erence between the sum of series and its n− th subsum. The in-
equation algebra served as evidence-based techniques here� [Grabiner,
1983, p. 4 of the electronic version].

First decades of the XIX century can be characterized as a period of
�naïve� theory of functions � analysis developed on the basis of elemen-
tary functions, both continuous and di�erentiable, based on intuitive
qualitative de�nitions of a limit, neighborhood, continuity, and conver-
gence.

In 1797, Lagrange published `The Theory of Analytical Functions
which contains basics of di�erential calculus free from any considera-

3Sylvestre Lacroix (1765 - 1843) was Lagrange's successor in École Politechnique
and professor of analysis to Cauchy. In 1850s, Weierstrass started using symbol
lim
x=c

; in 1905, an English mathematician John Leathem �rst used lim
x→c

in his book

[Leathem, 1905].
4 I am grateful to M. Katz for his message about it.
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tion of in�nitely small limits tending to zero and �uxions, and reduced
to analysis of �nite values'. Considering function fx and replacing x
with a new value x+ i, Lagrange asserts that f(x+ i) can be expanded
into series in positive powers of i, their coe�cients determined by way
of di�erentiation, which is true for known functions. Considering the
�rst expansion term, Lagrange obtains f(x+ i) = fx+ iP , from which

P =
f(x+ i)− fx

i
. In this case, i can be so small that any expan-

sion term would be greater than the sum of all subsequent expansion
terms, and the same applies to all smaller i values as well [Yushkevich,
1977, Yushkevich A. 1977, p. 160 - 168]. Lagrange adds: �Perfection
of approximation methods in which series are applied depends not only
on convergence of series, but on the ability to assess the error resulting
from neglected terms as well; and it can be stated that all approximative
methods used in geometrical and mechanical problems are so far very
imperfect. The previous theorem will in many cases be able to inform
of the perfection they miss, failing which they are often dangerous to
apply� [Lagrange, p. 67 - 68]5.

In 1800, C.F. Gauss' work entitled `Basic concepts of the theory of
series' appears (see [Gauss, 1800, 1917]), where he considers series as
sequences of subsums.

In 1806, André-Marie Ampère published his article entitled `Elabo-
ration of certain issues in di�erential calculus which enable obtaining a
new presentation of Taylor expansion and expression thereof of closed
form if summing is limited' [Ampère, 1806] which is directly relevant to
our story. Here, Ampère proves Lagrange mean value theorem on 33
pages and, based thereon, obtains what we know as Taylor expansion
with an integral remainder in the form of Lagrange. A.P. Yushkevich
calls this Ampère's work an attempt to prove analytically di�eretiability
of continuous functions [Yushkevich, 1972, p. 243].

Ampère's key tool of proof were inequations6. Using them, he as-
sessed approximants and characterized interpolation error. Following

Lagrange, Ampère considers
f(x+ i)− f(x)

i
as a function of two vari-

ables x and i which represents a divided di�erence of two values of x
and x+ i of the same variable, this di�erence not equaling zero or in�n-

ity at whatsoever x, while at i = 0 it changes into
0

0
, however, equals

neither zero nor in�nity. Lagrange called this function resulting from a

5Quoted from [Yushkevich, 1972, p. 298] as translated by A.P. Yushkevich.
6The same method is used in works of J. Lagrange, J.-B. Fourier (1822), and

P.A. Rakhmanov (1803).
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derivate.
Note that the symbol i here identi�es a real number; an imaginary

unit was denoted by symbol
√
−1 at that time. Ampère explicitly states

that he will consider only functions of a real variable. Naturally, the
consideration included by default only �good� functions, i.e. continuous
functions and those di�erentiable in a �nite interval7 . Ampère notes
that this function must decrease and increase as i changes. Variable x
changes from x = a to x = k, the respective values of function f(x) being
denoted through A and K. Ampère divides the interval from x = a to
x = k by intermediate values b, c, d, e, which satisfy (correspond to) the
values of function B,C,D,E. Thereafter, he builds divided di�erences

like
K − E
k − e

and
E − A
e− a

and proves the correctness of inequations like

E − A
e− a

<
K − A
k − a

<
K − E
k − e

. Further, new values are inserted between

the old ones, and new inequations are written. As a result, for certain

x, f ′(x) gradually approaches the value of
f(x+ i)− f(x)

i
It follows

from here that this value is always between two values of a derivative
calculated between x and x+ i.

Let us assume that x + i = z and
f(z)− f(x)

z − x
= p . Then f(z) =

f(x) + p(z − x) Proceeding with the procedure, Ampère obtains

f(z) = f(x) + f ′(x)(z − x) + p′(z − x)2

f(z) = f(x) + f ′(x)(z − x) + f ′′(x)

2
(z − x)2 + p′′(x)

2
(z − x)3

f(z) = f(x)+f ′(x)(z−x)+f
′′(x)

2
(z−x)2+f

′′′(x)

2 ∗ 3
(z−x)3+p

′′′(x)

2 ∗ 3
(z−x)4

etc.
Ampère gives examples of expansion of certain elementary functions.

Further, considering f(x) to be primary (primitive) relative to f ′(x),
he �nds how the sign of a derivative depends on the increase or de-
crease of the function [Ampére, 1806]. Ampère's proof looks lengthy
and awkward. It was this particular inadequacy that made Augustin
Louis Cauchy (1789-1857) wish to o�er a concise and beautiful construc-
tion, which, as we will see later, was used to create the ε− δ language.

Since 1813, A.-L. Cauchy was teaching at École Polytechnique; in
1816, he became member of the Academy. In 1821, he published the

7Ampère himself never used the terms point, interval, inclination, chord, or tan-
gent line in his memoir, nor did he make any drawings.
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Course of Analysis [Cauchy, 1821] (translated into Russian � [Cauchy,
1821, 1864]) he had given at École Royal Politechnique.In the Chapitre
II of the Course Cauchy gives in�nitesimal calculus. In this Course
Cauchy provides a de�nition of a continuous function as follows: �Let
f(x) be a real function of the variable x, and suppose that for each
value of x between two given limits, the function always takes a unique
�nite value. If, beginning with a value of x contained between these
limits, we add to the variable x an in�nitely small increment a, the
function itself is increment by the di�erence f(x + a) − f(x), which
depends both on the new variable a and on the value of x. Given this,
the function f(x) is a continuous function of x between the assigned
limits if, for each value of x between these limits, the numerical value of
the di�erence f(x+ a)− f(x) decreases inde�niyely with the numerical
value of a. In other words, the function f(x) is continious with respect

to x between the given limits if, between these limits, an in�nitely small

increment in the variable always produces an in�nitely small increment

in the function itself.
We also say that the function f(x) is a continious function of the

variable x in a neighborhood of a particular value of the variable x when-
ever it is continious between two limits of x that enclose that particular
value, even if are very close together�. [Cauchy, 1821, p. 43]; [Cauchy,
2009, p. 26]. Here he understands the limit as the terminal point of the
interval concerned.

Henceforth, each time he referred to a continuous function, Cauchy
repeated and used this de�nition only. An English historian of mathe-
matics J. Gray notes: �Cauchy de�ned what it is for a function to be
integrable, to be continuous, and to be di�erentiable, using careful, if
not altogether unambiguous, limiting arguments� [Gray, 2008, p. 62].
Bªaszczyk, Katz and Sherry pointed out that Gray is not being accurate
when he includes continuity among properties Cauchy allegedly de�ned
using �limiting arguments�. Namely, the word �limit� does appear in
Cauchy's de�nition, but only in the sense of endpoint of the interval,
not in any sense related to the modern notion of the limit [Bªaszczyk,
Katz, Sherry, 2013].

In �3 of Chapter One of the Course d'Analyse, Cauchy considers
special values of the function and proves a theorem he is going to need
for consideration of equivalency of in�nitesimals [Cauchy, 1821, 1864, p.
46]8 :

�If with increase of the variable x the di�erence f(x+1)−f(x) tends

8Translated by F. Ewald, V. Grigor'ev, A. Il'in.
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to a limit k, the fraction
f(x)

x
will at the same time tend to the same

limit as well.
Proof. Let us suppose that value k has a �nite value and that ε is

an arbitrary small number. According to the statement, as x increases,
di�erence f(x+ 1)− f(x) tends to the limit k; besides, one can always
take such great number h that at x equal to or greater than h this
di�erence will be constantly between limits k−ε, k+ε. Having assumed
this, let us denote an arbitrary whole number by n, then each quantity
will be as follows:f(h+1)−f(h), f(h−2)−f(h+1), . . . , f(h+n)−f(h+

n− 1), and therefore, their arithmetical average, i.e.
f(h+ n)− f(h)

n
,

will be in between limits k−ε, k+ε. Therefore, f(h+ n)− f(h)
n

= k+a

, where a is the number between limits −ε,+ε.
Let us suppose now that h + n = x . Then the previous equation

will become
f(x)− f(h)

x− h
= k + a (1)

Therefore, f(x) = f(h) + (x− h)(k + a) and

f(x)

x
=
f(h)

x
+

(
1− h

x

)
(k + a) (2)

For the value of x to be able to increase inde�nitely, it is su�cient
to increase the number n inde�nitely without changing the value h.
Therefore, let us assume that h is constant in equation (2) and x is a

variable tending to limit ∞ ; then the numbers of
f(h)

x
,
h

x
contained in

the second part will tend to limit zero and the entire second part, to
a limit that can be described as k + a , where a is constantly con�ned

between −ε and +ε. Therefore, the limit of relation
f(x)

x
will be the

number con�ned between k − ε and k + ε. Whereas this conclusion is
true no matter how small is ε, the unknown limit of the function will

be number k. In other words, lim
f(x)

x
= k = lim[f(x+ 1)− f(x)].�

The case where x tends to ±∞ is considered in the same way
[Cauchy, 1821, 1864, p. 46 - 49].

As we can see, there is a structure here whose development of which
led to introduction of the ε − δ method. However, ε here is a �nitesi-
mal, although arbitrary small, assessment of an error. Cauchy improves
Ampère's construction. Two years later, he will improve the rationale
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from this proof. However, so far, the need to read the course in the
customary way without detouring into new developments did not allow
Cauchy to experiment with introducing new methods. Judging from
the fact that Cauchy had to explain basics (reduction to common de-
nominator, fundamentals of trigonometry, properties of exponentials)
to his students, their training was quite limited. Students were known
to clamor against studying complex numbers, which they believed to be
an absolutely useless domain of math.

Cauchy's basic course includes statement of elementary theory of
functions of one or more variables, of real and imaginary variables (com-
plex variables were called imaginary variables at that time), their prop-
erties, theory of limits including comparison of in�nitesimals, theory of
series, Lagrange interpolation formulas.

In 1822, J.-B. Fourier's Analytic Theory of Heat where he used δ-
changes was published [Fourier, 1822, p.139].

In 1823, Lecture Notes were published based on the course of lectures
in In�nitesimal Calculus [Cauchy, 1823] read by Cauchy at École Poly-
technique. The course was intended for 40 lectures. These notes were
published in Russian under the title �Kratkoje izlozhenije urokov o dif-
ferenzialnom i integralnom ischislenii� (Di�erential and Integral Calcu-
lus) as translated by V.Y. Bunyakovsky in 1831 [Cauchy (1823), 1831].
The book contained a de�nition of a limit as follows: �If values at-
tributed to any variable number approximate the value determined so
as to �nally di�er from the latter as small as desired, then these former
values are called the limit of all others�9 [ibid., p. 3] and a de�ni-
tion of a continuous function as follows: �If a function f(x) changes
along with the value x so that for each value of this variable con�ned
between the given limits it has one unambiguous value, then the di�er-
ence f(x + i) − f(x) between the limits of value x will be an in�nitely
small number; while a function f(x) which meets this condition is called
a continuous function of variable x between those limits� [ibid., p.11].
And further, in the second lecture:

�If variables are linked with one another so that judging from the

9In connection therewith, the remark of an English historian of mathematics,
J. Gray: �Although limits did appear in Cauchy's de�nitions, however, they meant
only the �nite point of the de�nition interval� [Gray, 2008, p. 62] seems inappro-
priate. As Mikhail Katz notes,�Gray claims that Cauchy de�ned continuity using
"limiting arguments". This is inaccurate. In our paper [Bªaszczyk, Katz, Sherry,
2013] we point out the inaccuracy of what he wrote, and add that limits did ap-
pear in Cauchy's de�nition of continuity, but only as the endpoint of the interval of
de�nition� [Personal message].
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value of one variable, values of the remaining variables can be obtained,
this means that these di�erent values are expressed with the help of one
of them called independent variable, and the values presented through
it are called functions of this variable.

The letter ∆ is often used in calculations to denote a concurrent
increase of two variables depending on each other10 . In this case, the
variable y will be expressed as a function of the variable x in the equation

y = f(x) (3)

Therefore, if variable y is expressed as a function of the variable x in the
equation y = f(x), then ∆y, or an increase in y caused by an increase
in ∆x in the variable x, will be denoted by formula:

y +∆y = f(x+∆x) (4)

therefore
∆y = f(x+∆x)− f(x) (5)

Now, let h and i be two di�erent values, the �rst of which is �nites-

imal and the second one, in�nitely small; and let a =
i

h
be an in�nitely

small value given as the ratio of these two values. If a �nite value h
corresponds to ∆x, then the value ∆y given in equation (5) will be the
so-called �nite di�erence of function f(x) and will naturally be a �nite
number.

Should you conversely give ∆x an in�nitesimal value, e.g. ∆x = i =
ah, the value of ∆y will be f(x+ i)− f(x) or f(x+ah)− f(x), and will
naturally be in�nitely small.

Thus, for a function f(x) which uniquely possesses �nite values for all
x contained between two given limits, the di�erence f(x+ i)− f(x) will
always be in�nitely small between these limits, i.e. f(x) is a continuous
function between the limith within which it changes.

10There was no such remark in the course of 1821. Here Cauchy points to the ex-
istence of a link between increment of function and increment of argument without
detailing the connection in their change, which was done by Weierstrass forty years
later. Instead, there appears term `concurrent' (simultané), which is characteristic
of the XVIII and XIX century. Moreover, the exhaustion method was in correspon-
dence with the anthropomorphous time. Newton said that he could calculate the
area under the parabola over half a quarter of an hour; he also said (see [Cajori,
1919, p. 103]): �at the moment the hour expires, no inserted or described �gure
exists anymore; however, each of them aligns with a curvilinear �gure which is the
limit they reach�. Other mathematicians of the XVIIIth century also de�ned the
limiting process as taking some hours, that is, eventually observable. In this event,
this symbol ε denoted a calculation error in Cauchy's works as well.
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A function f(x) is also said to always be a continuous function of the
variable x in the vicinity of any particular value of such variable, if this
function is continuous between two (even quite close) limits containing
this given point� [Cauchy, 1823, p. 17].

Under the assumption that any continuous function is di�erentiable,
Cauchy proves the mean value theorem (see [ibid., p. 44 � 45]; [Cauchy
(1823), 1831, p. 36]) as follows:

Theorem 0.1 Let function f(x) be continuous between two limits x =
x0, x = X . Let us denote the greatest value of its derivative by A, with B
being the smallest value of its derivative between the same limits. Then

the divided di�erence
f(X)− f(x0)

X − x0
will inevitably be con�ned between

A and B.

Let us denote in�nitesimal numbers with letters δ, ε, of which let the
�rst one be such number that for numeric values of i that are less than
δ, and for any value of x con�ned between limits x0, of X the ratio
f(x+ i)− f(x)

i
will always be greater than f ′(x)− ε and smaller than

f ′(x) + ε.�11

Cauchy mentions that in this proof he keeps to Ampère's memoir
quoted above.

Like Ampère, Cauchy inserts new values12 of x1, x2,. . . , xn−1 be-
tween x0 and X so that the di�erence X − x0 could be decomposed
into positive parts x1−x0, x2−x1, . . . , X−xn−1 which do not exceed δ.

�Fractions
f(x1)− f(x0)

x1 − x0
,
f(x2)− f(x1)

x2 − x1
,
f(X)− f(xn−1)

X − xn−1
located be-

tween limits: �rst:f ′(x0) − ε,f ′(x0) + ε , second: f ′(x1) − ε,f ′(x1) + ε ,
will be greater thanA−ε , however, no smaller than B+ε . Whereas de-
nominators of the fractions have the same sign, having divided the sum
of their numerators by the sum of their denominators, we will obtain an
intermediate value fraction, that is to say, a fraction the value whereof
lies between the smallest and the greatest of the fractions. However,

whereas
f(X)− f(x0)

X − x0
is an intermediate value fraction, it is therefore

con�ned between the limits A − ε and B + ε. And whereas it is true

at as small ε as we please,
f(X)− f(x0)

X − x0
therefore lies between limits

A and B� [Cajori, 1919, p. 36] and [Gauss, 1800, 1917, p. 44]13. In

11Translated by V.Y. Bunyakovsky.
12Like Ampère, Cauchy does not use any geometric images: points, intervals.
13Translated by V.Y. Bunyakovsky.
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other words, A < f ′(x)− ε < f(x+ i)− f(x)
i

< f ′(x)+ ε < B for i < δ

Cauchy brilliantly simpli�ed Ampère's proof, having introduced simpler
symbols. Ampère states his proof on half the 33 pages, while Cauchy's
proof is stated on two pages. Ampère introduces eight auxiliary val-
ues, and estimates every ratio; instead of averaging, he proves lengthy
in-equations. Cauchy's proof is elegant and concise.

But Cauchy does not analyze interdependence of ε and δ or depen-
dence of δ on the ensuing di�erence between neighboring values of the
variable. Essentially, δ is included in a proclamatory way, his δ does
not play any constructive role.

An American researcher, Judith Grabiner believes [Grabiner, 1983]
that Cauchy transformed proving technique of inequation algebra into
a rigorous approximation error assessment tool.

A Dutch researcher, T. Koetsier believes (v. [Koetsier, 2009]) that
Cauchy arrived at his concept of continuity by analyzing his proof of
the mean-value theorem kept in mind only polynomials. It is evident
that xn in his proof are variables which di�er from an in�nitely small by
a constant a. Pursuant to Cauchy's de�nition of continuity, f(xn) must
di�er from f(a) by an in�nitesimal value. Unlike Grabiner, analyzing
Cauchy's proof, Koetsier �nds no trace of ε− δ.

Analyzing Grabiner's hypotheses that Cauchy only assessed the ap-
proximation error, P. Bªaszczyk (Poland), M. Katz (Israel), and D.
Cherry (USA) arrive at the following conclusion: �Following Koetsier's
hypothesis, it is reasonable to place it, rather, in the in�nitesimal strand
of the development of analysis, rather than the epsilontic strand.

After constructing the lower and upper sequences, Cauchy does write
that the values of the latter ��niront par di�érer de ces premièrs valeurs
aussi peu que l'on voudra�. That may sound a little bit epsilon/delta.
Meanwhile, Leibniz uses language similar to Cauchy's: `Whenever it is
said that a certain in�nite series of numbers has a sum, I am of the
opinion that all that is being said is that any �nite series with the
same rule has a sum, and that the error always diminishes as the series
increases, so that it becomes as small as we would like [�ut �at tam
parvus quam velimus�].

Cauchy used epsilontics if and only if Leibniz did, over a century
before him� (v. [Bªaszczyk, Katz, Sherry, 2013, p.18]

According to a Moscow researcher A.V. Dorofeeva writing about the
mean value theorem, in Cauchy's works, �this conclusion is true only
if the same δ can be picked out for all x, the fact whereof needs to be
proved� (v. [Dorofeeva, 1971, p. 48]).
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In 1985, a book of Bruno Belhoste entitled `Cauchy. 1789-1857'
[Belhoste, 1985] was published in Paris. Its translation [Belhoste, 1997]
into Russian was published in 1997. Belhoste wrote in [Belhoste, 1985,
p. 109-110] regarding Cauchy's proof of Lagrange's theorem: �Instead
of the formula f(x+ i)−f(x) = pi+qi2+ri3+ . . . that enabled Lacroix
to present an increase of a function expandable into series and to de�ne
the di�erential, Cauchy proved the theorem on �nite increments: if a
function f is continuously di�erentiable between x and x+ i, then there
exists a real positive number θ < 1 such that f(x+i)−f(x) = if ′(x+θi)
He developed this formula from the inequation below using the theorem
on intermediate values set forth in Analysis

inf
x∈[x0,X]

f ′(x) ≤ f(X)− f(x0)
X − x0

≤ sup
x∈[x0,X]

f ′(x) (∗)

This inequation is correct for any continuous function (and hence, for
di�erentiable function in the sense of Cauchy) between x0 and X�.

Please note that the theorem on intermediate values in The Course of
Analysis of 1821 [Cauchy, 1821, p. 50] reads as follows: �The Theorem

on Continuous Function. If function f(x), a continuous function of
variable x between limits x = x0, x = X and b, is located between
f(x0) and f(X), then equation f(x) = b will always possess a solution
located between x0 and X. �

Belhoste provides drawings to accompany Cauchy's theorems, much
as we complement Lagrange's theorem with a function graph and feature
a chord joining extreme points together in lectures we read to students.
However, you will �nd no drawing in the course of Cauchy; geometric
interpretation of theorems is not mentioned anywhere either14 . The
statement provided by Belhoste is modern in its nature.

Thereafter, Belhoste continues: �The proof provided by Cauchy in
1823 only for functions continuously di�erentiable in [x0, X] made his
new methods famous and made it possible to see the di�erence between
a simple and uniform continuity.

14There are no drawings in works of Cauchy, Lagrange, or Ampère. They only
appear in works of Lacroix [Lacroix, 1797], however, not to illustrate this theorem.
Belhoste provides a modern geometric interpretation. The author is thankful to S.S.
Demidov for the following remark: �Advanced in years Lacroix certainly works in
the manner of the XVIII century. Therefore, he should not be regarded as following
Lagrange, Cauchy, and Ampère in terms of development of analysis. He merely did
not have skills introduced by Lagrange: no illustrations in the text, no reference to
visualization! � [Personal message]
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However, his proof of the inequation (*) was based on a completely
wrong assumption: if a function f is continuous (and therefore di�eren-
tiable in the sense of Cauchy) between x0 and X, and if ε is a positive
number which is as small as we may wish, then, according to Cauchy,
there exists such positive number δ15 that for any i which is smaller
than δ and for all x between x0 and X

f ′(x)− ε ≤ f(x+ i)− f(x)
i

≤ f ′(x) + ε

In fact, this inequation is true only for all x located between x0 and X,
provided always that is equicontinuous between these two numbers (or
continuous in a closed bounded interval [x0, X]). This error has proven
that the lack of a clear distinction between continuity and uniform con-
tinuity was the weak point in the course of Cauchy. Nevertheless, the
theorem on �nite increments was consistently used and appeared to be
the basic theorem in di�erential calculus� [Belhoste, 1985, p. 90 - 91].

It should be noted that it was a closed interval that was meant
by both Ampère and Cauchy. All examples illustrating this theorem
were given for elementary functions that were uniformly continuous in
a closed interval. Let us repeat Cauchy's words: �A function f(x) is also
said to always be a continuous function of the variable x in the vicinity
of any particular value of such variable, if this function is continuous be-
tween two (even quite close) limits containing this given point� [Cauchy,
1823, p. 17].

Cauchy did not use the language of ε− δ16 any more, not even in his
late works. According to A.P. Yushkevich, �Cauchy's de�nition of con-
tinuity is as far from `epsilontics' as his de�nition of limit� [Yushkevich,
1986, p. 69]. For the method to work, ε and δ must be interrelated
and have the structure of an interval (domain). In 1823, the under-
standing of a continuum was not yet developed enough for this. Let us
also mention the standpoint of H. Putnam, which was as follows: �If
the epsilon-delta methods had not been discovered, then in�nitesimals
would have been postulated entities (just as `imaginary' numbers were
for a long time). Indeed, this approach to the calculus enlarging the
real number system�is just as consistent as the standard approach, as
we know today from the work of Abraham Robinson. If the calculus

15Note that Belhoste expressly provided that delta is chosen judging from epsilon,
while Cauchy made no such express provision.

16The author of the article is responsible for this statement. All works of Cauchy
are available.
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had not been `justi�ed' Weierstrass style, it would have been `justi�ed'
anyway� [Putnam, 1974].

The relation between epsilon�delta was revealing itself little by lit-
tle in works on uniform continuity and uniform convergence: in the
works of P. Lejeune-Dirichlet, J.L. Raabe (in Crelle's journal), of G.
Stocks (1847), Ph.L. von Seidel (1847), Riemann (1854, paragraph 5)
and Cauchy (1853).

Development of epsilontics was associated with the development
of the concept of continuity. The remarkable similarity of Cauchy's
and Bolzano's ideas had lead an English historian of mathematics,
Ivor Grattan-Guinness, to a disputable idea of assimilation [Grattan-
Guinness, 1970].

There are many examples in the history of science when the same
ideas occurred to di�erent scientists contemporaneously. One can dis-
agree with Grattan-Guinness that such contemporaneous ideas were
rather borrowed. Ideas were in the air, that caused similar response of
mathematicians working in di�erent countries. This was the case with
non-Euclidean geometry. This was the case with the concept of continu-
ous function where Bolzano and Cauchy were based on Lagrange's ideas.
This was the case with the concept of a surd number and continuity of
continuum when Méray, Heine and Cantor contemporaneously o�ered
similar concepts based on Cauchy's converging sequence criterion.

In 1868, 1869 and 1872, works of Charles Méray where he develops
the theory of surd numbers with the help of a limit were published. The
most complete statement of his theory is in the volume of 1872 [Méray,
1872]; comments can be found in works of [Dugac, 1973] and [Dugac,
1972], [Sinkevich, 2012c].

During the XIX century, the necessity to express the relationship
between epsilon and delta manifested itself more and more, but its func-
tionality has formalized gradually. A signi�cant contribution made by
B. Riemann [Riemann, 1854, paragraph 5]. Hankel used δ < ε when
de�ning limit [Hankel, 1870/71, p.195]. Eduard Heine, Ulisse Dini em-
ployed the estimate δ < ε [Sinkevich, 2012a], [Sinkevich, 2012b].

The notion of uniform convergence appears in works of Ph.L. Seidel
(v. [Seidel, 1847]) and G.G. Stokes (v. [Stokes, 1849]). Without a special
name it was introduced by Cauchy (v. [Cauchy, 1853]. In 1872 Heine
used Cauchy's variant, known him thanks to Cantor.

In 1854, Karl Weierstrass started reading lectures in Berlin Univer-
sity. It was he who introduced such symbols as lim

x=∞
pn =∞ (published

in 1856) [Yushkevich, 1986, p.76]).
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Unfortunately, Weierstrass himself had never published or edited his
lectures. In most cases, they came down to us in notes of his students.
Eduard Heine bemoaned about this: �The principles of Mr. Weierstrass
are set forth directly in his lectures and in indirect spoken messages,
and in handwritten copies of his lectures, and are pretty widely spread;
however, their author's editions have never been published under the
author's supervision, which damages their perceptual unity� [Heine,
1872, p.172]. But the main conception of ε − δ method formed in his
Berlin lectures. According to A.P. Yushkevich, �The modern statement
of di�erential calculus with its ε, δ-technique, wordings, and proofs, is
reported to date back to the lectures Weierstrass read in Berlin Univer-
sity, interpretations whereof were published by his students� [Yushke-
vich, 1977, p. 192].

The earliest known text of Weierstrass where the ε − δ technique
is mentioned are di�erential calculus lecture notes made from a lec-
ture read in the summer term of 1861 in Königlichen Gewerbeinsti-
tut of Berlin. �The lecture notes were made by Weierstrass' student,
H.A. Schwarz's, and are now kept in Mittag-Le�er Institute in Sweden.
Schwarz was 18 then, and he wrote these notes solely for himself, not
to be published� [Yushkevich, 1977, p. 192]. Schwarz' notes were found
and published by [Dugac, 1972]. It is in these notes that the de�nition
of continuous function in the language of epsilontics appears for the �rst
time: �If f(x) is a function of x and x is a de�ned value, then, on con-
version of x into x+h, the function will change and will be f(x+h); the
di�erence f(x + h) − f(x) is usually called the change received by the
function by virtue of the fact that the argument converts from x to x+h.
If it is possible to determine such boundary δ for h that for all values of
h, whose absolute value whereof is still smaller than δ, f(x+ h)− f(x)
becomes smaller than any arbitrarily small value of ε, then in�nitesimal
changes of the function are said to correspond to in�nitesimal changes
of the argument. Because a value is said to be able to become in�nitely
small, if its absolute value can become smaller than any arbitrary small
value. If any function is such that in�nitesimal changes of function cor-
respond to in�nitesimal changes of argument, then it is said to be a

continuous function of argument or that it continuously changes along
with its argument� [Yushkevich, 1977, p.189].

In 1872, Eduard Heine in �Die Elemente der Functionenlehre� [Heine,
1872] gave a de�nition of the limit function using Cantor's fundamental
sequences. Every convergent sequence was represented as the sum of
its limit and the elementary (decreasing) sequence [Heine, 1872, p.178].
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On this basis, Heine formulates the condition of continuity [ibid, 182-
183], the de�nition of uniform continuity in terms of ε-δ, the theorem of
uniformly continuous functions17. In the proof he used a cover lemma
for the �nite case. ( [Heine, 1872, paragraph 3, theorem 6]). Heine
used it as auxillary method he knew from Dirichlet lectures (1842) for
the proof of a theorem on the uniform continuity). He meant intervals
between irrational number and its limit. In the same year in Cantor's
�Ueber die Ausdehnung eines Satzes der Theorie der trigonometrischen
Reihen� there is a notion of a limit point. It was very useful and be-
came widely known to mathematicians in Germany and Italy thanks to
Schwarz. Ulisse Dini �rst used the concept of a limit point in his course
�Fondamenti per la teoria delle funzioni di variabili reali�. Theory of
real number Dini expounded according to Dedekind. De�ning the limit
of the function for the case of the �nal argument, Dini used ε-δ lan-
guage. He was the �rst who gave the de�nition of continuous function
at a point by left and right limits.

In 1881, an Austrian mathematician Otto Stolz (1842-1905) wrote an
article �The importance of B. Bolzano in the history of calculus� [Stolz,
1881]. He argues for the importance of Bolzano's ideas in the devel-
opment of in�nitesimal analysis, based on the history of mathematical
ideas of Lagrange, Cauchy, Duhamel, du Bois-Reymond, Weierstrass,
Cantor, Schwarz and Dini. As he writes in the beginning, �Cauchy re-
lied on in�nitesimal calculus, abandoning the limits of the method of La-
grange, believing that only in�nitesimal methods provide the necessary
rigor. Clarity and elegance of its presentation facilitated widespread
and the universal adoption of his course. Even signi�cant shortcomings
found , as time has shown, can be eliminated by the adoption of consis-
tent principles based on the Cauchy arithmetic considerations. A few
years before Cauchy these same views, sometimes substantially more
fully developed by Bernard Boªzano (...). Hankel recognizes its prior-
ity over Cauchy in a proper understanding of the theory of in�nite se-
ries. These ideas were continued Schwartz, Dini and Weierstrass" [Stolz,
1881, p. 255-256].

In 1885 O. Stolz published a textbook �Lectures on general arith-
metic according to a new point of view� [Stolz, 1885], which sets out
Weierstrass' analysis as a continuation of Cauchy's principles, in the
�ε− δ� language.

In 1886 Weierstrass lectured on the theory of functions and used a
notion of limit point when de�ning continuum [Weierstrass, 1886,1989,

17It was formulated by Cantor, as Heine wrote. Now it is Cantor-Heine theorem.
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Weierstrass, p.72] and ε − δ when de�ning continuous and uniformly
continuous functions [ibid, p. 73-74].

The legend that it was Cauchy who created the language of ep-
silontics appeared thanks to H. Lebesgue who wrote in his `Lectures in
integrating and searching for primal functions' of 1904: �For Cauchy, a
function f(x) is continuous for x0 if, regardless of the value of positive
number ε, one can �nd such a number η(ε) that the inequation |h| ≤ η(ε)
results in |f(x0 + h) − f(x0)| ≤ ε ; the function f(x) is continuous in
(a, b) if correlation between ε and η(ε) can be chosen regardless of x0 for
any x0 in (a, b)� [Lebesgue, 1904, 1934, p.13]. In this connection, A.P.
Yushkevich wrote: �In his famous work on integration theory, for some
reason H. Lebesgue ascribes the de�nition of continuity of functions at
a point stated in terms of epsilontics of early XX century to Cauchy
and describes this de�nition as classic. This is one of the numerous
examples of modernization of assertions of authors of earlier days even
by such outstanding mathematicians as H. Lebesgue was.� [Yushkevich,
1986, p. 69]

Unfortunately, most historical errors were caused by the fact that
authors did not turn to source materials. Instead, they believed a loose
paraphrase of a third party who normally used modern language. We
saw Belhoste's interpretation through supremum and in�num above,
we saw that he added a geometric image, we saw interpretations by
Lebesgue, Stolz, and others. In 1978, a reference book [Alexandrova,
1978] was published where article `Limit' reads as follows: �The de�-
nition of a limit through ε and δ was provided by Bolzano (1817) and
thereafter, by Cauchy (1820)� [ibid., p.13]. As you and I have seen for
ourselves, that is not so. Bolzano in 1817 and Cauchy in 1821 provided
qualitative de�nitions of a limit and de�nitions of a continuous function
in terms of increments; Cauchy used ε and δ once when he improved Am-
père's proof; however, Cauchy used ε and δ as �nal assessments of and
error, where δ did not depend on ε. Bolzano never used this technique.
According to Weierstrass' lecture notes of 1861, it was Weierstrass who
was the �rst to use the language of ε and δ as a method.

In 1821, when Cauchy was writing his `Course of Analysis', E. Heine
was born in Berlin. Fifty-one years later, the latter stated the concept
of uniform continuity. K. Weierstrass was 6 in 1821. It took about 40
years for him to start using epsilontics to the full extent.
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Streszczenie. Praca przedstawia histori¦ twierdze« i poj¦¢ sformuªo-
wanych w j¦zyku ε � δ w XIX-wiecznych pracach matematycznych. Z
przytoczonych faktów wynika, »e chocia» symbole ε i δ byªy wst¦pnie
wprowadzone w 1823 przez Cauchy'ego, to nie byªo tam funkcyjnej za-
le»no±ci δ-y od ε-a. Dopiero w 1861 metod¦ opisu z wykorzystaniem
epsilona�delty zastosowaª w peªni Weierstrass formuªuj¡c de�nicj¦ gra-
nicy. Praca niniejsza pokazuje ró»ne interpretacje tej metody opisu
przez innych matematyków. Pierwotna wersja tego artykuªu ukazaªa
si¦ [Sinkevich, 2012d] w j¦zyku rosyjskim.
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