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It is mere feedback-style ahistory to read
Cauchy (and contemporaries such as Bernard
Bolzano) as if they had read Weierstrass
already. On the contrary, their own
pre-Weierstrassian muddles need historical
reconstruction.

[ , p. 176].

Since the early antiquity the concept of continuity was described
throgh the notions of time, motion, divisibility, contact® .

The ideas about functional accuracy came with the extension of
mathematical interpretation to natural-science observations. Physical
and geometrical notions of continuity became insufficient, ultimately

* Tlanmna VBanosua CuHKeBHY

1“The ’continuous’ is a subdivision of the contiguous: things are called continuous
when the touching limits of each become one and the same and are, as the word
implies, contained in each other: continuity is impossible if these extremities are
two”. “Being continuous it is one” [Aristotle, Physics, Book V, parts 3, 4].
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necessitating an arithmetization of this concept. The understanding
of the continuity of mathematical objects was evolving gradually. The
concept of a continuous function was formalized only in the early XIX
century, and that of a numerical set - in the late XIX century.

In the XVII century, G. Leibniz laid down The Law of Continuity as
follows: “In any supposed [continuous| transition, ending in any termi-
nus, it is permissible to institute a general reasoning, in which the final
terminus may also be included? ” | , p-40].

In his Arithmetica Infinitorum Wallis introduced the following defi-
nition of a limit: “But (which for us here suffices) they continually ap-
proach more closely to the required ratio, in such a way that at length
the difference becomes less than any assignable quantity” |

, p- 42|. Euler’s personal copy of this book of Wallis is preserved
in the Archives of St. Petersburg Academy of Sciences as part of the
Euler collection.

Euler considered functions represented by a single formula to be
continuous. According to Euler, “the rules of calculation are based on
The Law of Continuity, pursuant to which curved lines are drawn by
continuous movement of a point”, “a continuous line is drawn so that its
nature is presented with the help of one specific function of z” |

, v.2 p. 21].

In 1765, J. d’Alembert provided the following definition of a limit: “A
value is said to be a limit of another value if the latter can approximate
the former nearer than any given value, no matter how small it may
be supposed, however, without the approximating value being able to
exceed the value it approximates; thus, the difference between such
value and its limit is absolutely indeterminable” | . P.
155-156]. The limit in the d’Alembert was not constant.

L. Carnot in 1797 tried to unite the the method of limits and in-
finitesimal calculus as “procedures of both methods became absolutely
identical” | , p. 45-55]. The contest declared by Berlin
Academy of Sciences in 1786 at the initiative of J. Lagrange promoted
strengthening of interest in infinitesimal issues: “... we need a clear and
accurate theory of what is called continuous in mathematics” |

, p. 140]. None of the 23 works submitted to the contest
satisfied the Academy: “...the principle we need must not be limited to
calculation of infinitely small values; it must extend to algebra and ge-

2The word "continuous" was omitted is Child’s translation, as pointed out by
[ , p.- 1551]. I am grateful to S.S. Demidov who brought to my
attention the similarity of this idea of Leibniz and Bolzano’s and Cauchy’s under-
standing of continuity [ |
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ometry as well which render after the manner of the ancients” |

, p. 141]. The winner of the contest was a Swiss mathe-
matician Simon L’Huilier (1750 - 1840), who lived in Warsaw at that
time. It was in his work entitled ‘Elementary statement of principles of

AP
calculus’ published by the Academy in 1786 that symbol limA— first

appeared | , p- 31|. Thereafter, this symbol was uged by
Lacroix® .

The infinitesimal methods disappointed Lagrange and in subsequent
years, he avoided using infinitely small values (infinitesimals). Nonethe-
less, in 1811, in his 2-nd publication of Analytical Mechanics, Lagrange
called infinitesimals a safe and convenient tool to simplify a proof *.

“On a conservé la notation ordinaire du calcul differentiel, parce
qu’elle répond au systéme des infiniment petits, adopté dans ce Traité.
Lorsqu’on a bien concgu 'esprit de ce systeme, et qu’on s’est convaincu
de l'exactitude de ses résultats par la méthode géométrique des pre-
miéres et derniéres raison, ou par employer les infiniment petits comme
un instrument sur et commode pour abréger et simplifier, les démon-
strations. C’est ainsi qu’on abrége les démonstrations des Anciens, par
la méthode des indivisibles” | , pAi|.

The most popular method of XVIII century geometricians was ap-
proximation. For example, “solving an equation like (z 4+ 1)* = a with
non-integer p, we cannot come up with a precise solution, but approx-
imate it using infinite series. Having determined the finite number of
elements of the approximating series, XVIII century geometricians tried
to calculate the upper limit of the approximation error (error, €), i.e.
the difference between the sum of series and its n — th subsum. The in-
equation algebra served as evidence-based techniques here” |

, D. 4 of the electronic version|.

First decades of the XIX century can be characterized as a period of
“naive” theory of functions — analysis developed on the basis of elemen-
tary functions, both continuous and differentiable, based on intuitive
qualitative definitions of a limit, neighborhood, continuity, and conver-
gence.

In 1797, Lagrange published ‘The Theory of Analytical Functions
which contains basics of differential calculus free from any considera-

3Sylvestre Lacroix (1765 - 1843) was Lagrange’s successor in Ecole Politechnique
and professor of analysis to Cauchy. In 1850s, Weierstrass started using symbol
lim ; in 1905, an English mathematician John Leathem first used lim in his book
r=c r—c
[ ]

4 T am grateful to M. Katz for his message about it.
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tion of infinitely small limits tending to zero and fluxions, and reduced
to analysis of finite values’. Considering function fx and replacing x
with a new value x + i, Lagrange asserts that f(z +4) can be expanded
into series in positive powers of i, their coefficients determined by way
of differentiation, which is true for known functions. Considering the
first expansion term, Lagrange obtains f(z + i) = fx + ¢P, from which
p_ flz+i)— fx

sion term Wéuld be greater than the sum of all subsequent expansion
terms, and the same applies to all smaller ¢ values as well |

, Yushkevich A. 1977, p. 160 - 168]. Lagrange adds: “Perfection
of approximation methods in which series are applied depends not only
on convergence of series, but on the ability to assess the error resulting
from neglected terms as well; and it can be stated that all approximative
methods used in geometrical and mechanical problems are so far very
imperfect. The previous theorem will in many cases be able to inform
of the perfection they miss, failing which they are often dangerous to
apply” |[Lagrange, p. 67 - 68|°.

In 1800, C.F. Gauss’ work entitled ‘Basic concepts of the theory of
series’ appears (see | |), where he considers series as
sequences of subsums.

In 1806, André-Marie Ampére published his article entitled ‘Elabo-
ration of certain issues in differential calculus which enable obtaining a
new presentation of Taylor expansion and expression thereof of closed
form if summing is limited’ [Ampére, 1806] which is directly relevant to
our story. Here, Ampére proves Lagrange mean value theorem on 33
pages and, based thereon, obtains what we know as Taylor expansion
with an integral remainder in the form of Lagrange. A.P. Yushkevich
calls this Ampére’s work an attempt to prove analytically differetiability
of continuous functions | , p. 243].

Ampére’s key tool of proof were inequations®. Using them, he as-
sessed approximants and characterized interpolation error. Following

fle+1) = (@)

i
ables x and ¢ which represents a divided difference of two values of z
and x + 1 of the same variable, this difference not equaling zero or infin-

In this case, ¢ can be so small that any expan-

as a function of two vari-

Lagrange, Ampére considers

ity at whatsoever x, while at ¢+ = 0 it changes into — , however, equals

neither zero nor infinity. Lagrange called this function resulting from a

®Quoted from [ , - 298] as translated by A.P. Yushkevich.
6The same method is used in works of J. Lagrange, J.-B. Fourier (1822), and
P.A. Rakhmanov (1803).
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derivate.

Note that the symbol i here identifies a real number; an imaginary
unit was denoted by symbol v/—1 at that time. Ampére explicitly states
that he will consider only functions of a real variable. Naturally, the
consideration included by default only “good” functions, i.e. continuous
functions and those differentiable in a finite interval” . Ampére notes
that this function must decrease and increase as ¢ changes. Variable x
changes from x = a to x = k, the respective values of function f(x) being
denoted through A and K. Ampére divides the interval from x = a to
x = k by intermediate values b, ¢, d, e, which satisfy (correspond to) the

values of function B, C, D, E. Thereafter, he builds divided differences
K—-F E—-A

like and and proves the correctness of inequations like
—e e—a
EFE—-A K-A K-F
< . Further, new values are inserted between
e—a k—a k—e

the old ones, and new inequations are written. As a result, for certain
z+1)— fx
1 ) f() It follows

7
from here that this value is always between two values of a derivative
calculated between x and x + i.

f(z) — f(=z)

=p. Then f(z) =
z—x
f(x) 4+ p(z — z) Proceeding with the procedure, Ampére obtains

f(2) = f(@)+ f(@)(z —2) + P'(z — 2)°

x, f'(z) gradually approaches the value of

Let us assume that z +¢ = 2z and

) = @)+ Py —a) + L g PO

2 2

: f"(x) 2, J"(x) 5, P"(x) 4
fz) = f@)+ @) (z—a)+ (2 —a) + 5 S (ema) + 5 = (e—2)
etc.

Ampére gives examples of expansion of certain elementary functions.
Further, considering f(x) to be primary (primitive) relative to f'(x),
he finds how the sign of a derivative depends on the increase or de-
crease of the function | |- Ampére’s proof looks lengthy
and awkward. It was this particular inadequacy that made Augustin
Louis Cauchy (1789-1857) wish to offer a concise and beautiful construc-
tion, which, as we will see later, was used to create the ¢ — ¢ language.

Since 1813, A.-L. Cauchy was teaching at Ecole Polytechnique; in
1816, he became member of the Academy. In 1821, he published the

7TAmpére himself never used the terms point, interval, inclination, chord, or tan-
gent line in his memoir, nor did he make any drawings.
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Course of Analysis | | (translated into Russian — |

]) he had given at Ecole Royal Politechnique.In the Chapitre
IT of the Course Cauchy gives infinitesimal calculus. In this Course
Cauchy provides a definition of a continuous function as follows: “Let
f(z) be a real function of the variable x, and suppose that for each
value of x between two given limits, the function always takes a unique
finite value. If, beginning with a value of x contained between these
limits, we add to the variable x an infinitely small increment a, the
function itself is increment by the difference f(z + a) — f(x), which
depends both on the new variable a and on the value of x. Given this,
the function f(x) is a continuous function of = between the assigned
limits if, for each value of  between these limits, the numerical value of
the difference f(x + a) — f(x) decreases indefiniyely with the numerical
value of a. In other words, the function f(z) is continious with respect
to x between the given limits if, between these limits, an infinitely small
increment in the variable always produces an infinitely small increment
in the function itself.

We also say that the function f(z) is a continious function of the
variable z in a neighborhood of a particular value of the variable x when-
ever it is continious between two limits of x that enclose that particular
value, even if are very close together”. | , p- 43]; |

, D- 26]. Here he understands the limit as the terminal point of the
interval concerned.

Henceforth, each time he referred to a continuous function, Cauchy
repeated and used this definition only. An English historian of mathe-
matics J. Gray notes: “Cauchy defined what it is for a function to be
integrable, to be continuous, and to be differentiable, using careful, if
not altogether unambiguous, limiting arguments” | , p- 62].
Blaszczyk, Katz and Sherry pointed out that Gray is not being accurate
when he includes continuity among properties Cauchy allegedly defined
using "limiting arguments”. Namely, the word "limit” does appear in
Cauchy’s definition, but only in the sense of endpoint of the interval,
not in any sense related to the modern notion of the limit |

|-

In §3 of Chapter One of the Course d’Analyse, Cauchy considers
special values of the function and proves a theorem he is going to need
for consideration of equivalency of infinitesimals | , P
46]°

“If with increase of the variable = the difference f(x+1)— f(z) tends

8Translated by F. Ewald, V. Grigor’ev, A. I’in.
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@)

X

to a limit &, the fraction will at the same time tend to the same

limit as well.

Proof. Let us suppose that value k£ has a finite value and that € is
an arbitrary small number. According to the statement, as = increases,
difference f(x + 1) — f(x) tends to the limit k; besides, one can always
take such great number h that at = equal to or greater than h this
difference will be constantly between limits k —e, k+¢. Having assumed
this, let us denote an arbitrary whole number by n, then each quantity
will be as follows: f(h+1)— f(h), f(h—2)— f(h+1),..., f(h+n)— f(h+

f(h+n)— f(h)

n — 1), and therefore, their arithmetical average, i.e. ,
n

f(h+n) = f(h)

n

will be in between limits k—e, k+e¢. Therefore, =k+a

, where a is the number between limits —e, +e.
Let us suppose now that h +n = x . Then the previous equation

will become
flz) = f(h)
x—h
Therefore, f(z) = f(h) + (z — h)(k + a) and
)00 (B y

i i

=k+a (1)

For the value of x to be able to increase indefinitely, it is sufficient
to increase the number n indefinitely without changing the value h.
Therefore, let us assume that h is constant in equation (2) and z is a

f(h) h

, — contained in

variable tending to limit oo ; then the numbers of

r
the second part will tend to limit zero and the entire second part, to
a limit that can be described as k + a , where a is constantly confined

m will be the

x
number confined between k — ¢ and k + . Whereas this conclusion is
true no matter how small is €, the unknown limit of the function will

be number k. In other words, lim @) =k=1lim[f(x+1) — f(x)].”
T

The case where x tends to 4+oo is considered in the same way
| , b. 46 - 49].

As we can see, there is a structure here whose development of which
led to introduction of the ¢ — § method. However, € here is a finitesi-
mal, although arbitrary small, assessment of an error. Cauchy improves
Ampeére’s construction. Two years later, he will improve the rationale

between —e and +e¢. Therefore, the limit of relation
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from this proof. However, so far, the need to read the course in the
customary way without detouring into new developments did not allow
Cauchy to experiment with introducing new methods. Judging from
the fact that Cauchy had to explain basics (reduction to common de-
nominator, fundamentals of trigonometry, properties of exponentials)
to his students, their training was quite limited. Students were known
to clamor against studying complex numbers, which they believed to be
an absolutely useless domain of math.

Cauchy’s basic course includes statement of elementary theory of
functions of one or more variables, of real and imaginary variables (com-
plex variables were called imaginary variables at that time), their prop-
erties, theory of limits including comparison of infinitesimals, theory of
series, Lagrange interpolation formulas.

In 1822, J.-B. Fourier’s Analytic Theory of Heat where he used §-

changes was published | , p-139].
In 1823, Lecture Notes were published based on the course of lectures
in Infinitesimal Calculus | | read by Cauchy at Ecole Poly-

technique. The course was intended for 40 lectures. These notes were
published in Russian under the title “Kratkoje izlozhenije urokov o dif-
ferenzialnom i integralnom ischislenii” (Differential and Integral Calcu-
lus) as translated by V.Y. Bunyakovsky in 1831 | |-
The book contained a definition of a limit as follows: “If values at-
tributed to any variable number approximate the value determined so
as to finally differ from the latter as small as desired, then these former
values are called the limit of all others™ [ibid., p. 3] and a defini-
tion of a continuous function as follows: “If a function f(z) changes
along with the value x so that for each value of this variable confined
between the given limits it has one unambiguous value, then the differ-
ence f(x +1) — f(z) between the limits of value x will be an infinitely
small number; while a function f(x) which meets this condition is called
a continuous function of variable x between those limits” [ibid., p.11].
And further, in the second lecture:

“If variables are linked with one another so that judging from the

9In connection therewith, the remark of an English historian of mathematics,
J. Gray: “Although limits did appear in Cauchy’s definitions, however, they meant
only the finite point of the definition interval” [ , p- 62] seems inappro-
priate. As Mikhail Katz notes,“Gray claims that Cauchy defined continuity using
"limiting arguments". This is inaccurate. In our paper [
| we point out the inaccuracy of what he wrote, and add that limits did ap-
pear in Cauchy’s definition of continuity, but only as the endpoint of the interval of
definition” [Personal message].
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value of one variable, values of the remaining variables can be obtained,
this means that these different values are expressed with the help of one
of them called independent variable, and the values presented through
it are called functions of this variable.

The letter A is often used in calculations to denote a concurrent
increase of two variables depending on each other'® . In this case, the
variable y will be expressed as a function of the variable x in the equation

y = f(x) (3)

Therefore, if variable y is expressed as a function of the variable x in the
equation y = f(x), then Ay, or an increase in y caused by an increase
in Az in the variable z, will be denoted by formula:

y+ Ay = f(x + Ax) (4)

therefore
Ay = f(z+ Az) — f(z) (5)
Now, let h and ¢ be two different values, the first of which is finites-

imal and the second one, infinitely small; and let a = Y be an infinitely

small value given as the ratio of these two values. If a finite value h
corresponds to Az, then the value Ay given in equation (5) will be the
so-called finite difference of function f(x) and will naturally be a finite
number.

Should you conversely give Ax an infinitesimal value, e.g. Az =i =
ah, the value of Ay will be f(x+1i) — f(z) or f(z+ah)— f(z), and will
naturally be infinitely small.

Thus, for a function f(x) which uniquely possesses finite values for all
x contained between two given limits, the difference f(z+1i) — f(z) will
always be infinitely small between these limits, i.e. f(z) is a continuous
function between the limith within which it changes.

10There was no such remark in the course of 1821. Here Cauchy points to the ex-
istence of a link between increment of function and increment of argument without
detailing the connection in their change, which was done by Weierstrass forty years
later. Instead, there appears term ‘concurrent’ (simultané), which is characteristic
of the XVIIT and XIX century. Moreover, the exhaustion method was in correspon-
dence with the anthropomorphous time. Newton said that he could calculate the
area under the parabola over half a quarter of an hour; he also said (see [

, - 103]): “at the moment the hour expires, no inserted or described figure
exists anymore; however, each of them aligns with a curvilinear figure which is the
limit they reach”. Other mathematicians of the XVIIIth century also defined the
limiting process as taking some hours, that is, eventually observable. In this event,
this symbol € denoted a calculation error in Cauchy’s works as well.
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A function f(x) is also said to always be a continuous function of the
variable x in the vicinity of any particular value of such variable, if this
function is continuous between two (even quite close) limits containing
this given point” | , p. 17].

Under the assumption that any continuous function is differentiable,
Cauchy proves the mean value theorem (see [ibid., p. 44 —45]; |

, p. 36]) as follows:

THEOREM 0.1 Let function f(x) be continuous between two limits x =
xo,x = X . Let us denote the greatest value of its derivative by A, with B
being the smallest value of its derivative between the same limits. Then

the divided difference 10 —1(®0)
X —a
A and B.

will inevitably be confined between

Let us denote infinitesimal numbers with letters 0, ¢, of which let the
first one be such number that for numeric values of ¢ that are less than
0, and for any value of x confined between limits zy, of X the ratio

fla+i)— i@

Fla) + e

Cauchy mentions that in this proof he keeps to Ampére’s memoir
quoted above.

Like Ampére, Cauchy inserts new values'? of zy, za,..., T,_1 be-
tween xy and X so that the difference X — zy could be decomposed
into positive parts 1 — xg, 9 — 1, ..., X — x,_1 which do not exceed 9.

“Fractions f(z1) — f(%o)7 f(za) — f(l’l)’ f(X) = f(@n-1)
1 — X To — X1 X — Tpn—1
tween limits: first: f'(zo) — €,f'(x0) + €, second: f'(x1) —€,f'(z1) + €,
will be greater thanA — e , however, no smaller than B+¢ . Whereas de-
nominators of the fractions have the same sign, having divided the sum
of their numerators by the sum of their denominators, we will obtain an
intermediate value fraction, that is to say, a fraction the value whereof
lies between the smallest and the greatest of the fractions. However,
F(X) = f(o)
X — i
confined between the limits A — € and B + e¢. And whereas it is true
f(X) — f(o)
X — Zo
A and B” | , p. 36| and | , p. 44]%. Tn

UTranslated by V.Y. Bunyakovsky.
12Like Ampére, Cauchy does not use any geometric images: points, intervals.
13Translated by V.Y. Bunyakovsky.

will always be greater than f’(z) — € and smaller than

located be-

whereas is an intermediate value fraction, it is therefore

at as small ¢ as we please, therefore lies between limits
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flz+1i) = fx)

other words, A < f'(x) —e <

< fllry+e<Bfori<d
Cauchy brilliantly simplified Ampére’s proof, having introduced simpler
symbols. Ampére states his proof on half the 33 pages, while Cauchy’s
proof is stated on two pages. Ampére introduces eight auxiliary val-
ues, and estimates every ratio; instead of averaging, he proves lengthy
in-equations. Cauchy’s proof is elegant and concise.

But Cauchy does not analyze interdependence of € and  or depen-
dence of ¢ on the ensuing difference between neighboring values of the
variable. Essentially, ¢ is included in a proclamatory way, his § does
not play any constructive role.

An American researcher, Judith Grabiner believes | |
that Cauchy transformed proving technique of inequation algebra into
a rigorous approximation error assessment tool.

A Dutch researcher, T. Koetsier believes (v. | |) that
Cauchy arrived at his concept of continuity by analyzing his proof of
the mean-value theorem kept in mind only polynomials. It is evident
that z,, in his proof are variables which differ from an infinitely small by
a constant a. Pursuant to Cauchy’s definition of continuity, f(x,) must
differ from f(a) by an infinitesimal value. Unlike Grabiner, analyzing
Cauchy’s proof, Koetsier finds no trace of € — ¢.

Analyzing Grabiner’s hypotheses that Cauchy only assessed the ap-
proximation error, P. Blaszczyk (Poland), M. Katz (Israel), and D.
Cherry (USA) arrive at the following conclusion: “Following Koetsier’s
hypothesis, it is reasonable to place it, rather, in the infinitesimal strand
of the development of analysis, rather than the epsilontic strand.

After constructing the lower and upper sequences, Cauchy does write
that the values of the latter “finiront par différer de ces premiérs valeurs
aussi peu que l'on voudra”. That may sound a little bit epsilon/delta.
Meanwhile, Leibniz uses language similar to Cauchy’s: ‘Whenever it is
said that a certain infinite series of numbers has a sum, I am of the
opinion that all that is being said is that any finite series with the
same rule has a sum, and that the error always diminishes as the series
increases, so that it becomes as small as we would like [“ut fiat tam
parvus quam velimus”|.

Cauchy used epsilontics if and only if Leibniz did, over a century
before him” (v. | , p-18]

According to a Moscow researcher A.V. Dorofeeva writing about the
mean value theorem, in Cauchy’s works, “this conclusion is true only
if the same 0 can be picked out for all x, the fact whereof needs to be
proved” (v. | , p. 48]).
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In 1985, a book of Bruno Belhoste entitled ‘Cauchy. 1789-1857
| | was published in Paris. Its translation | |
into Russian was published in 1997. Belhoste wrote in |
p. 109-110] regarding Cauchy’s proof of Lagrange s theorem: “Instead
of the formula f(x+1i) — f(z) = pi+¢i*+ri®+... that enabled Lacroix
to present an increase of a function expandable into series and to define
the differential, Cauchy proved the theorem on finite increments: if a
function f is continuously differentiable between x and x + ¢, then there
exists a real positive number § < 1 such that f(z+i)— f(x) = if' (x+01)
He developed this formula from the inequation below using the theorem
on intermediate values set forth in Analysis

IR < w0 (%)

— X0 z€[x0,X]

inf f'(x) <

z€[x0,X]

This inequation is correct for any continuous function (and hence, for
differentiable function in the sense of Cauchy) between zy and X

Please note that the theorem on intermediate values in The Course of
Analysis of 1821 [Cauchy, 1821, p. 50| reads as follows: “The Theorem
on Continuous Function. If function f(x), a continuous function of
variable x between limits * = x9, * = X and b, is located between
f(zo) and f(X), then equation f(z) = b will always possess a solution
located between zg and X. 7

Belhoste provides drawings to accompany Cauchy’s theorems, much
as we complement Lagrange’s theorem with a function graph and feature
a chord joining extreme points together in lectures we read to students.
However, you will find no drawing in the course of Cauchy; geometric
interpretation of theorems is not mentioned anywhere either'* . The
statement provided by Belhoste is modern in its nature.

Thereafter, Belhoste continues: “The proof provided by Cauchy in
1823 only for functions continuously differentiable in [z¢, X] made his
new methods famous and made it possible to see the difference between
a simple and uniform continuity.

4 There are no drawings in works of Cauchy, Lagrange, or Ampére. They only
appear in works of Lacroix [Lacroix, 1797], however, not to illustrate this theorem.
Belhoste provides a modern geometric interpretation. The author is thankful to S.S.
Demidov for the following remark: “Advanced in years Lacroiz certainly works in
the manner of the XVIII century. Therefore, he should not be regarded as following
Lagrange, Cauchy, and Ampére in terms of development of analysis. He merely did
not have skills introduced by Lagrange: no illustrations in the text, no reference to
visualization!” [Personal message|
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However, his proof of the inequation (*) was based on a completely
wrong assumption: if a function f is continuous (and therefore differen-
tiable in the sense of Cauchy) between 2y and X, and if € is a positive
number which is as small as we may wish, then, according to Cauchy,
there exists such positive number 6'° that for any ¢ which is smaller
than ¢ and for all z between xy and X

fila) —e< TEFDZIE) < gy g

In fact, this inequation is true only for all x located between zy and X,
provided always that is equicontinuous between these two numbers (or
continuous in a closed bounded interval [zg, X]). This error has proven
that the lack of a clear distinction between continuity and uniform con-
tinuity was the weak point in the course of Cauchy. Nevertheless, the
theorem on finite increments was consistently used and appeared to be
the basic theorem in differential calculus” | , p- 90 - 91].

It should be noted that it was a closed interval that was meant
by both Ampére and Cauchy. All examples illustrating this theorem
were given for elementary functions that were uniformly continuous in
a closed interval. Let us repeat Cauchy’s words: “A function f(z) is also
said to always be a continuous function of the variable x in the vicinity
of any particular value of such variable, if this function is continuous be-
tween two (even quite close) limits containing this given point” |[Cauchy,
1823, p. 17].

Cauchy did not use the language of € —§'° any more, not even in his
late works. According to A.P. Yushkevich, “Cauchy’s definition of con-
tinuity is as far from ‘epsilontics’ as his definition of limit” |

, p. 69]. For the method to work, ¢ and § must be interrelated
and have the structure of an interval (domain). In 1823, the under-
standing of a continuum was not yet developed enough for this. Let us
also mention the standpoint of H. Putnam, which was as follows: “If
the epsilon-delta methods had not been discovered, then infinitesimals
would have been postulated entities (just as ‘imaginary’ numbers were
for a long time). Indeed, this approach to the calculus enlarging the
real number system—is just as consistent as the standard approach, as
we know today from the work of Abraham Robinson. If the calculus

15Note that Belhoste expressly provided that delta is chosen judging from epsilon,
while Cauchy made no such express provision.

16The author of the article is responsible for this statement. All works of Cauchy
are available.
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had not been ‘justified” Weierstrass style, it would have been ‘justified’
anyway” | |-

The relation between epsilon—delta was revealing itself little by lit-
tle in works on uniform continuity and uniform convergence: in the
works of P. Lejeune-Dirichlet, J.L. Raabe (in Crelle’s journal), of G.
Stocks (1847), Ph.L. von Seidel (1847), Riemann (1854, paragraph 5)
and Cauchy (1853).

Development of epsilontics was associated with the development
of the concept of continuity. The remarkable similarity of Cauchy’s
and Bolzano’s ideas had lead an English historian of mathematics,
Ivor Grattan-Guinness, to a disputable idea of assimilation |

|.

There are many examples in the history of science when the same
ideas occurred to different scientists contemporaneously. One can dis-
agree with Grattan-Guinness that such contemporaneous ideas were
rather borrowed. Ideas were in the air, that caused similar response of
mathematicians working in different countries. This was the case with
non-Euclidean geometry. This was the case with the concept of continu-
ous function where Bolzano and Cauchy were based on Lagrange’s ideas.
This was the case with the concept of a surd number and continuity of
continuum when Méray, Heine and Cantor contemporaneously offered
similar concepts based on Cauchy’s converging sequence criterion.

In 1868, 1869 and 1872, works of Charles Méray where he develops
the theory of surd numbers with the help of a limit were published. The
most complete statement of his theory is in the volume of 1872 [Méray,
1872]; comments can be found in works of | | and |

N )

During the XIX century, the necessity to express the relationship
between epsilon and delta manifested itself more and more, but its func-
tionality has formalized gradually. A significant contribution made by
B. Riemann |Riemann, 1854, paragraph 5|. Hankel used § < € when
defining limit | , p-195|. Eduard Heine, Ulisse Dini em-
ployed the estimate § < € | |y [ |-

The notion of uniform convergence appears in works of Ph.L. Seidel
(v. | |) and G.G. Stokes (v. | |). Without a special
name it was introduced by Cauchy (v. | |. In 1872 Heine
used Cauchy’s variant, known him thanks to Cantor.

In 1854, Karl Weierstrass started reading lectures in Berlin Univer-
sity. It was he who introduced such symbols as zhr(lglC pn = 00 (published

in 1856) | , p.76]).



G.1.Sinkevich 15

Unfortunately, Weierstrass himself had never published or edited his
lectures. In most cases, they came down to us in notes of his students.
Eduard Heine bemoaned about this: “The principles of Mr. Weierstrass
are set forth directly in his lectures and in indirect spoken messages,
and in handwritten copies of his lectures, and are pretty widely spread;
however, their author’s editions have never been published under the
author’s supervision, which damages their perceptual unity” |

, p.172]. But the main conception of € — § method formed in his
Berlin lectures. According to A.P. Yushkevich, “The modern statement
of differential calculus with its €, d-technique, wordings, and proofs, is
reported to date back to the lectures Weierstrass read in Berlin Univer-
sity, interpretations whereof were published by his students” |

, p- 192].

The earliest known text of Weierstrass where the ¢ — 0 technique
is mentioned are differential calculus lecture notes made from a lec-
ture read in the summer term of 1861 in Koniglichen Gewerbeinsti-
tut of Berlin. “The lecture notes were made by Weierstrass’ student,
H.A. Schwarz’s, and are now kept in Mittag-Leffler Institute in Sweden.
Schwarz was 18 then, and he wrote these notes solely for himself, not
to be published” | , p. 192]|. Schwarz’ notes were found
and published by | |- Tt is in these notes that the definition
of continuous function in the language of epsilontics appears for the first
time: “If f(z) is a function of = and z is a defined value, then, on con-
version of x into x + h, the function will change and will be f(x+h); the
difference f(x + h) — f(z) is usually called the change received by the
function by virtue of the fact that the argument converts from x to x+h.
If it is possible to determine such boundary ¢ for h that for all values of
h, whose absolute value whereof is still smaller than 0, f(z + h) — f(z)
becomes smaller than any arbitrarily small value of €, then infinitesimal
changes of the function are said to correspond to infinitesimal changes
of the argument. Because a value is said to be able to become infinitely
small, if its absolute value can become smaller than any arbitrary small
value. If any function is such that infinitesimal changes of function cor-
respond to infinitesimal changes of argument, then it is said to be a
continuous function of argument or that it continuously changes along
with its argument” | , p-189].

In 1872, Eduard Heine in “Die Elemente der Functionenlehre” |
| gave a definition of the limit function using Cantor’s fundamental
sequences. Every convergent sequence was represented as the sum of
its limit and the elementary (decreasing) sequence | , p.178].
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On this basis, Heine formulates the condition of continuity [ibid, 182-
183], the definition of uniform continuity in terms of e-d, the theorem of
uniformly continuous functions'”. In the proof he used a cover lemma
for the finite case. ( | , paragraph 3, theorem 6]). Heine
used it as auxillary method he knew from Dirichlet lectures (1842) for
the proof of a theorem on the uniform continuity). He meant intervals
between irrational number and its limit. In the same year in Cantor’s
“Ueber die Ausdehnung eines Satzes der Theorie der trigonometrischen
Reihen” there is a notion of a limit point. It was very useful and be-
came widely known to mathematicians in Germany and Italy thanks to
Schwarz. Ulisse Dini first used the concept of a limit point in his course
“Fondamenti per la teoria delle funzioni di variabili reali”. Theory of
real number Dini expounded according to Dedekind. Defining the limit
of the function for the case of the final argument, Dini used e-¢ lan-
guage. He was the first who gave the definition of continuous function
at a point by left and right limits.
In 1881, an Austrian mathematician Otto Stolz (1842-1905) wrote an
article “The importance of B. Bolzano in the history of calculus” |
|. He argues for the importance of Bolzano’s ideas in the devel-
opment of infinitesimal analysis, based on the history of mathematical
ideas of Lagrange, Cauchy, Duhamel, du Bois-Reymond, Weierstrass,
Cantor, Schwarz and Dini. As he writes in the beginning, “Cauchy re-
lied on infinitesimal calculus, abandoning the limits of the method of La-
grange, believing that only infinitesimal methods provide the necessary
rigor. Clarity and elegance of its presentation facilitated widespread
and the universal adoption of his course. Even significant shortcomings
found , as time has shown, can be eliminated by the adoption of consis-
tent principles based on the Cauchy arithmetic considerations. A few
years before Cauchy these same views, sometimes substantially more
fully developed by Bernard Bolzano (...). Hankel recognizes its prior-
ity over Cauchy in a proper understanding of the theory of infinite se-
ries. These ideas were continued Schwartz, Dini and Weierstrass" |

. 255-256].
In 1885 O. Stolz published a textbook “Lectures on general arith-
metic according to a new point of view” | |, which sets out

Weierstrass’ analysis as a continuation of Cauchy’s principles, in the
“e — 9”7 language.

In 1886 Weierstrass lectured on the theory of functions and used a
notion of limit point when defining continuum | ,

17Tt was formulated by Cantor, as Heine wrote. Now it is Cantor-Heine theorem.
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Weierstrass, p.72| and € — 0 when defining continuous and uniformly
continuous functions [ibid, p. 73-74].

The legend that it was Cauchy who created the language of ep-
silontics appeared thanks to H. Lebesgue who wrote in his ‘Lectures in
integrating and searching for primal functions’ of 1904: “For Cauchy, a
function f(z) is continuous for xg if, regardless of the value of positive
number €, one can find such a number 7(¢) that the inequation |h| < 7(e)
results in |f(zo + h) — f(zo)| < € ; the function f(x) is continuous in
(a, b) if correlation between € and n(e) can be chosen regardless of x, for
any o in (a,b)” | , p-13]. In this connection, A.P.
Yushkevich wrote: “In his famous work on integration theory, for some
reason H. Lebesgue ascribes the definition of continuity of functions at
a point stated in terms of epsilontics of early XX century to Cauchy
and describes this definition as classic. This is one of the numerous
examples of modernization of assertions of authors of earlier days even
by such outstanding mathematicians as H. Lebesgue was.” |

, p- 69]

Unfortunately, most historical errors were caused by the fact that
authors did not turn to source materials. Instead, they believed a loose
paraphrase of a third party who normally used modern language. We
saw Belhoste’s interpretation through supremum and infinum above,
we saw that he added a geometric image, we saw interpretations by
Lebesgue, Stolz, and others. In 1978, a reference book |

| was published where article ‘Limit’ reads as follows: “The defi-
nition of a limit through € and 0 was provided by Bolzano (1817) and
thereafter, by Cauchy (1820)” [ibid., p.13]. As you and I have seen for
ourselves, that is not so. Bolzano in 1817 and Cauchy in 1821 provided
qualitative definitions of a limit and definitions of a continuous function
in terms of increments; Cauchy used € and J once when he improved Am-
pére’s proof; however, Cauchy used € and ¢ as final assessments of and
error, where 0 did not depend on €. Bolzano never used this technique.
According to Weierstrass’ lecture notes of 1861, it was Weierstrass who
was the first to use the language of € and 0 as a method.

In 1821, when Cauchy was writing his ‘Course of Analysis’, E. Heine
was born in Berlin. Fifty-one years later, the latter stated the concept
of uniform continuity. K. Weierstrass was 6 in 1821. Tt took about 40
years for him to start using epsilontics to the full extent.
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Historia epsylontyki
Galina Ivanovna Sinkevich

Streszczenie. Praca przedstawia historie twierdzen i pojeé¢ sformuto-
wanych w jezyku € — § w XIX-wiecznych pracach matematycznych. Z
przytoczonych faktow wynika, ze chociaz symbole € i § byly wstepnie
wprowadzone w 1823 przez Cauchy’ego, to nie bylo tam funkcyjnej za-
leznosci 4-y od e-a. Dopiero w 1861 metode opisu z wykorzystaniem
epsilona—delty zastosowal w pelni Weierstrass formutujac definicje gra-
nicy. Praca niniejsza pokazuje rézne interpretacje tej metody opisu
przez innych matematykéw. Pierwotna wersja tego artykulu ukazata
sie [ | w jezyku rosyjskim.
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